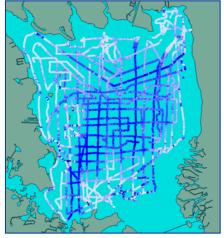
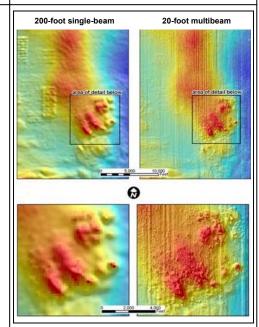

Summary View of Single-beam Bathymetry Survey Technique

-	_	_	_
	$oldsymbol{ au}_{A}$		=
_		**	-/-

NI OF	Application	Data Coverage			Image	Key Points
	Bathymetry	Along-track Point Data	cm	m	N/A	Point Dataset Simple to mob, use, process; low-cost for acquisition and processing Accurate and reliable bathymetry Common Frequency Ranges: 20 – 400 kHz Provides relatively sparse data coverage; requires greater degree of interpolation

Data Collection¹ Raw Data¹ Processed Data²


Similar to a side-scan sonar or acoustic seafloor classification system, single-beam bathymetry data are collected by measuring sound pulses reflected off the seafloor with a towed transducer.


Single-beam echosounder display equipment.

Raw data displays as it is collected (real time).

Bathymetry data can be displayed to show depths along survey transects.

Differences in resolution can be seen between single-beam bathymetry (left) and multibeam bathymetry (right).

N/A = Not applicable

Data collection and raw data images provided by U.S. Geological Survey and NOAA Coastal Services Center. ²Processed data images from Science Applications International Corporation.