Searching and Exploitation of Distributed Geospatial Data Sources via the Naval Research Lab’s Geospatial Information Database (GIDB®) Portal System

Frank P. McCreedy*a, John T. Sample a, William P. Ladda, Michael L. Thomasb, Kevin B. Shawa,
aNaval Research Laboratory, Stennis Space Center, MS 39529

bNational Guard Bureau

ABSTRACT

The Naval Research Laboratory’s Geospatial Information Database (GIDB®) Portal System has been extended to now include an extensive geospatial search functionality. The GIDB Portal System interconnects over 600 distributed geospatial data sources via the Internet with a thick client, thin client and a PDA client. As the GIDB Portal System has rapidly grown over the last two years (adding hundreds of geospatial sources), the obvious requirement has arisen to more effectively mine the interconnected sources in near real-time. How the GIDB Search addresses this issue is the prime focus of this paper.

Keywords: GIS, GIDB, Portal, Search
1. INTRODUCTION

The Naval Research Laboratory’s GIDB® Portal System is a GIS software system, written in the Java programming language, which provides automatic geographic data location, connectivity, and manipulation services. The GIDB Portal currently provides access to over 600 remote geographic data sources. The provided clients range from PDA to browser-based to a full stand-alone application. These clients can list the geographic data sources that are registered with the GIDB Portal, download data from these sources via the GIDB Portal, and view and save the data. Figure 1 shows the client user interface that displays the list of the remote data sources that are contained in the GIDB Portal System. The remote data sources can be expanded to show an ordered listing of their geographic data layers. The clients have the ability to fuse together data from these various different sources into a single map. The GIDB Portal System can be accessed at http://dmap.nrlssc.navy.mil

 In the early stages of GIDB Portal System development, there were only a few remote data sources so finding data relevant to the user was not much of a problem (as long as the data was present in the system)1. Today, the high number of remote sources, along with the potentially complex structure of each source’s geographic data layer grouping, makes finding data a challenging task for the user. The user must manually expand and contract a large number of nodes to find the geographic data that they need. Most users are understandably not patient enough to complete this process, so unless they already know where to look from past experience, are likely to give up in frustration. This issue has already been addressed to some extent by the “Theme” data source, which attempts to group layers of common theme together even though they may be provided by different remote sources.2 Populating the theme driver is a manual process however, so it is not always up to date and it may not fully incorporate all of the data sources available in the GIDB Portal System. Even with the theme source, the user must know what groupings contain the geographic data layers of interest. These kinds of data location problems are unfortunately common to the users of GIS software systems, who often find themselves fumbling around with various different types of links to geographic data, which often apply to different applications so they must also remember what links go with what applications.

[image: image1.png]- selectDataToaddToap R = | R -1 select DataToadd ToMap Tk

View Load Senvers Preferences View Load Senvers Preferences

[NEZIE] @P@@@

Local Data

Rt
52 cioe pora seres

@ & sherlockniissc.navy mik30 589 servers, 589 total data sources]
& ada County ID Maps
& adams County CO Maps
& Aiken SC Maps.
& Alabama Geological Survey Maps
& Alachua County FL Maps
& Alaska DFG Commercial Fisheries Maps
& alaska DFG Wildiife Conservation Maps
& Alaska DOT Maps
& Albuguerque NM Maps.
& Allen T Maps
& alternative Fuels Data Center Maps
& ameregis Corp Maps.
& AmherstNY Maps
& anchorage AK City Maps
& Anchorage AK Maps
& anderson County SC Maps
& anson County NC Maps
& aransas County X Maps
& arapanoe County CO Maps
& Ardmore OK Maps

& ada County D Maps

& adams County CO Maps

& Aiken SC Maps.

& alabama Geological Survey Maps

Gealogytimi
) Countes scale:d A max10200626

) Coutties wih Backarop scale0 mitiNA mac10200625

R Defaut Backarop or Geologyhir scale:0 miniNA mac1 0200626
R Geologic Units scalexd rin A max10084512

R Geologic Urits wih Backdrop scale) mimNA mac1 0084512

R resharge areas of major aqufers scale:d i A max10083632
R resharge areas of major aquiers with Backaop scal=0 A

ology

boataccess

seslagyiara

sanresouroes

[tuscaloosaco

& Alachua County FL Maps
& Alaska DFG Commercial Fisheries Maps

Fig. 1. Remote Data Source Presentation to User

The rest of this paper will describe a new attempt to simplify geographic data location and acquisition by implementation of a geographic data search function. This search function, an extension to the GIDB Portal System, allows the user to find layers by entering keywords, phrases and logical operators.

2. GIDB ARCHITECTURE

The GIDB Portal abstracts away the particular access protocols of the remote data sources when presenting them to the clients. This is accomplished by having each remote data source connector software module (called “drivers” in the remainder of this paper) implement a common Java connection interface. This interface allows data sources (along with their individual connection protocols) to be added and removed from the GIDB Portal without requiring changes to the clients or other parts of the GIDB Portal system.

Each driver presents the list of its available geographic data as multiple tree-structures (referred to henceforth as “metadata trees”). Every unique tree path, ending at a leaf node (a node with no children), represents a geographic data layer that can be retrieved by the clients by providing this complete path to the driver. Every driver has a list of “root” nodes. Each of these root nodes is the root of a metadata tree. Each metadata tree consists of named nodes, linked together, and has a structure similar to a computer file system. The leaf nodes in these trees contain references to geographic data layers. The types of these layers include image layers, vector data layers, complete data files in various formats, and complex layers consisting of collections of the other layer types

The drivers are completely free to access their remote data using any protocols that they need. However, the way in which these drivers show and deliver their data to the GIDB Portal clients is specified by the common connection interface and must be adhered to in order for the driver to work correctly within the GIDB Portal System. In this way, these drivers act as bridges between the clients and the remote data sources. The common interface describes certain data lookup and retrieval methods that must be implemented by each driver. Examples of these methods include methods to explore the metadata trees, methods to return geographic data in the form of images and vector data, and other methods that are used to instance and manage the driver. The driver modules run on the server side and are managed by the GIDB Portal System. Clients send their desired method calls to the GIDB Portal System and the GIDB Portal System passes them on to the appropriate driver module. Request parameters and responses are sent as Java objects (serialized, compressed and optionally encrypted) over HTTP. Figure 2 gives a simplified view of the architecture. Currently, drivers exist that have been written to communicate with ESRI ArcIMS, ESRI shape, AutoDesk, Map Objects, METCAST, TerraServer, Census Tiger, WMS servers and various other protocols. 3

[image: image2]
Fig. 2. Many Geographic Data Sources Linked Via Unique Protocols
3. Search Implementation

3.1 SERVER METADATA TREE CACHE

One approach to the GIDB Portal geographic data layer search problem would be to have the clients individually connect to each available driver and search each driver’s metadata trees. This would be extremely slow in the existing architecture. Each node expansion would require a separate HTTP connection to be made to the server hosting the node (drivers are allowed to exist on multiple different physical machines). Since there are over 600 servers, each containing an arbitrarily complex metadata tree, this would require thousands or tens of thousands of HTTP transactions every time a search is performed. This would be detrimental to the health of the network and would most likely be slow to the point of being unusable. Multithreading this process would help but would likely still be too slow and would increase the negative impact on the network since even more bandwidth would be required.

The selected solution was to have the GIDB Portal cache all of the driver metadata trees. When the client wants to perform a search, it builds a search request object that includes key words, phrases, and the logical relationships between them and sends this object to the server. The server then compares the request object to the metadata tree cache and returns matching tree paths to the client. Figure 3 illustrates the process. This approach takes only a single HTTP request. Also, by using this scheme, a single metadata tree cache object can service an unlimited number of clients, which means that the tree expansion process needs to happen only once, when performed by the server metadata tree caching process, for an unlimited number of searches. This has been further optimized by the fact that in most cases (as the GIDB Portal currently exists), the driver modules exist in the same Java Virtual Machine (JVM) as the rest of the GIDB Portal code (although this is not a requirement). This GIDB Portal System communication component can recognize this condition and use direct class method invocations instead of HTTP requests when doing the metadata tree expansions. This greatly increases the speed of the metadata tree node collection and completely eliminates network traffic in these cases. Using this scheme, the entire metadata trees of all of the driver modules are being held in memory by the GIDB Portal. This has been observed to only use a few megabytes of memory at this time and is not a burden to the GIDB Portal server.

Fig. 3. An Overview of the Entire Search Process
The metadata tree cache needs to be as up to date as possible since drivers may come and go in the system and their metadata trees may change in structure, yet there is some overhead in the cache construction so it should be utilized by the GIDB Portal for as long as possible. At this time, the refresh rate of the cache is somewhat arbitrarily set to 20 minutes. So every 20 minutes the metadata tree cache process connects to all of the drivers and starts the task of expanding their metadata trees. Once the new cache object is completely built and ready for use, the old cache object is replaced with the new one. Any searches in progress during this time will be completed using the old cache so that they will not have to be terminated. In most cases, the results will still be valid.
3.2 CLIENT SEARCH REQUEST CONSTRUCTION

The client presents the user with a search GUI that allows the user to search for geographic data layers based on a search expression. Figure 4 shows this GUI along with some example search expressions. When the user enters the search expression, the expression is first parsed for distinct elements. These elements are the keywords, phrases and logical operators, which are delimited by spaces. The parsing process must take into account that phrases with spaces may exist and not split them up by keeping aware of whether or not a phrase is currently open by keeping track of opened quotation marks. Also, the nesting symbols (parenthesis) must be stripped from the expression and treated as separate elements. So the parsing process is simply a tokenizing process – only slightly more complicated than common character delimiter tokenization schemes.

[image: image3.png]Select Data To Add To Map.

View

[&] [t b3l [[

e Keyords oa [suamtons

~=lolx|

|- selectDataTonddToMap =18

View

[&] [t b3l [[

Search Keywords:(road and inerstate)or higfway) not backaop | submit] Options;

[RASTER] Major Roads (Undefined Projection) scale:0 minNA max 47455253 A\ask%
[RASTER] Major Roads with Backdtop (Undefined Projection) scale:d min:NA max474)

[RASTER] Roads (Undefined Projection) scale:0 miniNA max47455253 Alaska DF
[RASTER] Roads with Backdrop (Undefined Projection) scale:0 minNA max 4745525
[RASTER] major_roads (Undefined Projection) scale:d min:NA max62931358 Alasl
[RASTER] major_roads with Backdrop (Undefined Projection) scale:0 min'NA max629|
[RASTER] Major Roads (Undefined Projection) scale:0 min:63360 max47455253 Al
[RASTER] Major Roads with Backdrop (Undefined Projection) scale:0 min63360 max
[RASTER] Default Backdrop for cvbroadband (Undefined Projection) scale:d minNa m:
[RASTER] Calfomia (Undefined Projection) scale:d min:NA max 26787459 Bakersi
[RASTER] Calfomia with Backdrop (Undefined Projsction) scale:0 min'NA max267974
[RASTER] ROADS scale:0 min:1 25000 max25017912 Chesapeake Bay Program b
[RASTER] ROADS with Backdtop scaled min‘1 25000 max 25017912 Chesapeake
[RASTER] ROADS scale:0 min:1 25000 max25017912 Chesapeake Bay Program b
[RASTER] ROADS with Backdtop scaled min‘1 25000 max 25017912 Chesapeake
[RASTER] MajorRoads scale:0 miniNA maxNA David Rumsey Colection Maps/host
[RASTER] MajorRoads with Backdrop scale:0 min:NA maxNA David Rumsey Collect
[RASTER] Major roads scale:0 minNA max377429434 David Rumsey Collection M
[RASTER] Major roads with Backdrop scale:d miniNA max377426434 David Rumsel
[RASTER] Major Roads scale:d minNAmax113228830 FEMAMMI Hazard Mapsim

K]

[RASTER] Interstate Highways scale:d minNA max83767268 David Rumsey Collec;
[RASTER Interstate_Highways scale:d minNA maxg3767256 David Rumsey Colles
[RASTER] Interstate Highways scale:d min5850018 max113144963 ESRI Maps/Ti
[RASTER] Interstate Highways scale:d min:5850018 max113144963 ESRI MapsiR
[RASTER] Interstate Highways scale:d min:5850018 max 144584080 ESRI MapsiR
[RASTER] Interstate Highways scale:d min:5850018 max 113144983 ESRI MapsiDi
[RASTER] Interstate Highways scale:d min5850018 maxB0808075 ESRI MapsiNE:
[RASTER] Major Highways 1 scale:0 min:1 681088 max 42026457 ESRI Maps/Cong|
[RASTER] Highway Bridges scale:0 miniNA max113228830 FEMAMMI Hazard Map
[RASTER] Highways scale:d minNA max 113228830 FEMA MMl Hazard Mapsimmi_{
[RASTER] Major Highways scale:d minNA max 113228830 FEMA MM Hazard Maps!
[RASTER] Major Highways scale0 min:3000009 max40000125 GeoCommunicator|
IVECTOR] Major Highways [1] scale:0 min:2000008 max40000125 Geography Net
[RASTER] Major Highways scale0 min:5000016 max 70000218 Geagraphy Networ
[RASTER] Major Highways scale:d min:5000016 max70000218 Geagraphy Networ
[RASTER] Major Highways scale: min:2000006 max40000125 Geagraphy Networ
[RASTER] Major Highways scale: min:2000006 max40000125 Geagraphy Networ
[RASTER] Major Highways scaled min:5000016 max 70000218 Geagraphy Networ
[RASTER] U.8. Highways scale:0 min:5000016 mac40000125 Geography Networkif_|

[RASTER Interstats Highways (Undefined Projection) scale:0 min:300001 maquSﬁi

Fig. 4. Search GUI and Example Searches

After tokenization occurs, search expressions must be created. The simplest search expression is a keyword. A step up from this is two keywords connected by a logical operator such as AND, OR and NOT (ex., Roads and Interstates). These logical operators can appear in word form (AND, OR, NOT) or symbol form (&& or & representing AND, || or | representing OR, and ! representing NOT). Phrases can be searched for by enclosing them in quotation marks at which point the entire phrase is treated as a keyword. Phrases may contain quotation marks internally by delimiting them with the “\” character. Search expressions can be nested to an indefinite level using parenthesis. Search expressions not joined together by a logical operator are automatically ANDed together. Unclosed phrases are automatically closed at the end of the text field. The user can also bring up an option screen (as seen in Figure 5) which allows selection of general search options such as keyword case sensitivity, exact word matching, scale and bounding area matching, and types of layers desired.

[image: image4.png]=10l x|

[[case Sensitivel [ExactWord Matching

] Limit results to current map scale

] Limit results to current map boundary
V] Update results as map boundary changes
] Leave search window on top
Layertypes: [Vectors [Rasters vl Composites (¥ Files

o]

Fig. 5. General Search Options

3.3 SERVER-SIDE SEARCH REQUEST HANDLING

When the user requests a search, the search object is sent to the GIDB Portal. The GIDB Portal takes this request object and compares it against the metadata tree cache that is has already generated. The GIDB Portal first evaluates every unique metadata tree path with respect to the general search options of scale, bounding area and layer type. This is due to the fact that these criteria will evaluate much more quickly than the user’s search expression, possibly eliminating a large number of metadata tree paths from consideration against the user’s search expression, speeding the matching process. After these criteria are evaluated for each metadata tree path, each metadata tree path is turned into a string. This is done by concatenating the name of the driver to each node name in the path. This string is then sent, along with the case sensitivity and exact word matching flags, to the search object for evaluation against the user’s search expression. If the string matches the search expression, the associated metadata tree path is added to a list of matching paths. Once all of the paths have been evaluated, this list is sent back to the client and displayed to the user. The user can then click on items in the list to load geographic data layers (as illustrated in Figure 6).

[image: image5.png]*

/x|
Legena
NetionalAtas Roats
o ~lolx .
Loaded layers: M, e
RoD3) Sv? @R em| 5 2
(251 o Cotios org pettiarer (8 2 @IS O | 4o
NASA Bluc Marble svzRREcem| =
-]
fs] Wetata
viow
s ok

File A0l Tools Preferences Help

[

All=]

EES

ajajalvi<]>] ¢ ¢
T

Status: Ready -76.8350,525839 Origin:-1351377, 207052 Comer.-57.7194, 541141 Scale: 124426201

JE=] [JE=IE]

| [l
St Kewords: [Foads T et ap [t cptens

[RASTER] ROADS (Auto) scale:d minNAmaxNA The National MapTRANSPORTATION!
[RASTER] Natianal Atlas Roads (htipfmemewebmap.usgs. gowOGCConnectorisenetios

Fig. 6. Using Search Function to Add Layers to GIDB Portal Client

4. ConclusionS and future work

The described search mechanism that has been added to the GIDB Portal greatly aids the user in finding geographic data relevant to their particular needs. The mechanism is simple yet effective, however there are potential areas that may be improved upon. For instance, the current approach is limited to searching only on metadata tree node names and driver names. This is a very simple type of metadata and completely relies on appropriate grouping and group naming by the driver modules when they construct their metadata trees. Many geographic data layers however have more in-depth metadata that could likely be taken advantage of by the search function. The main hurdle to using this type of metadata is the widely varying format and request mechanisms used to find and retrieve it.

The current search is a brute force approach. Metadata trees are exhaustively searched for keywords and phrases. Perhaps the metadata trees could be mapped to a sorted keyword and phrase search tree that could possibly make the matching process more efficient. Currently most searches are complete within a couple of seconds, which is a reasonable amount of time to make the user wait. This time will most likely increase though as more driver modules are brought into the system and more users perform searches at the same time. Eventually more efficient search algorithms will almost certainly be needed.

Another item that would help the user would be a list of their past searches and a list of the most popular searches encountered by the GIDB Portal. These lists could be presented to the user when they begin their searching and possibly save them the trouble of creating and refining their own searches. Also, perhaps if their search returned only a few results, some of the popular searches that are similar in subject could be presented to the user as “suggested layers”.

A thesaurus function could also be added. For instance, if a user searches for “Roads” the server could automatically identify certain layers that could be considered roads, such as layers labeled “Interstates” or “Highways”. This would require a large amount of manual work mapping keywords to other keywords to create this thesaurus unless some auto keyword mapping process is created.

A more robust metadata tree caching process is needed as well. Problems have already arisen where certain drivers can disrupt the caching process. For instance, a driver returning a null pointer to the GIDB Portal metadata tree caching process when it should have returned a metadata node caused the search function to crash and made the search mechanism completely unavailable to all of the clients. This error condition is now being handled, and an attempt has been made to catch and handle all similar types of incidents. However, a thorough review of all of the possible error conditions needs to be undertaken to ensure constant availability of the search function.

ACKNOWLEDGEMENTS

We would like to thank the National Guard Bureau for sponsoring the research and deployment of the GIDB Portal system.

References

1. Chung M., R. Wilson, K. Shaw, F. Petry, M. Cobb, "Querying Multiple Data Sources via an Object-Oriented Spatial Query Interface and Framework", Journal of Visual Languages and Computing Vol. 12, No. 1, pp. 37-60, February 2001.

2. Wilson, R., M. Cobb, F. McCreedy, R. Ladner, D. Olivier, T. Lovitt, K. Shaw, F. Petry, M. Abdelguerfi, "Geographical Data Interchange Using XML-Enabled Technology within the GIDB System", Chapter 13, XML Data Management, Akmal B. Chaudhri, editor, Addison-Wesley, Boston, 2003.

3. Sample, J.T.,M.L. Thomas, F.P. McCreedy, K.B. Shaw, “The National Guard Bureau’s Digital Mapping System Portal System”, in Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III, edited by Edward M. Carapezza, Proceedings of SPIE VOL. 5403 (SPIE, Bellingham, WA, 2004) 33-39.

Clients

(all drivers appear in a common format)

Serialized

Java

Objects

GIDB

Portal

Driver

Driver

GIS

Source 1

GIDB Portal

GIS

Source N

GIS

Source 2

Driver

Client presents matching paths to user. Paths are made clickable allowing layers to be easily loaded

Matching paths are collected and returned to the client

Search object evaluates each path, determines if path node names match the given keywords, phrases and operators

Server sends each metadata tree path from cache to search object for evaluation

Client sends search object to server

Search object organizes parsed elements into structure suitable for metadata tree comparison

Client creates search object using parsed elements

Client parses out search text field elements

(grouping symbols, keywords, phrases,

logical operators)

*frank.mccreedy@nrlssc.navy.mil; phone 1 228 688-4678; fax 1 228 688-4853; http://dmap.nrlssc.navy.mil

